Final Exam Formula Sheet 17/18

Chapter 10

$$\sin 2\alpha = 2 \sin \alpha \cos \alpha,$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 1 - 2\sin^2 \alpha = 2\cos^2 \alpha - 1$$

$$\tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha}$$

$$\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}} \qquad \cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$$

$$\tan \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} = \frac{\sin \alpha}{1 + \cos \alpha} = \frac{1 - \cos \alpha}{\sin \alpha}$$

Chapter 11

$$x = r \cos \theta, y = r \sin \theta$$

$$r = \pm \sqrt{x^2 + y^2}, \quad \tan \theta = \frac{y}{x}$$

$$rcis\theta = r(\cos \theta + i \sin \theta)$$

$$\sqrt[n]{z} = z^{\frac{1}{n}} = r^{\frac{1}{n}}cis\left(\frac{\theta}{n} + \frac{k \cdot 360}{n}\right)$$

$$A^{-1} = \frac{1}{|A|} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Chapter 13

$$t_{n} = t_{1} + (n - 1)d$$

$$t_{n} = t_{1}r^{n-1}$$

$$S_{n} = \frac{n(t_{1} + t_{n})}{2}$$

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$S_{n} = \frac{t_{1}(1 - r^{n})}{1 - r}, r \neq 1$$

$$|f| |r| < 1, \text{ then } \lim_{x \to \infty} r^{n} = 0$$

$$|f| |r| < 1, \text{ then } S_{n} = \frac{t_{1}}{1 - r}, r \neq 1$$

Chapter 15

$$\overline{n(A \cup B)} = n(A) + n(B) - n(A \cap B)
n(A) = n(U) - n(\overline{A})
nC_r = \frac{n!}{(n-r)!r!}, \, _nP_r = \frac{n!}{(n-r)!}
(a+b)^n = _{n}C_0a^nb^0 + _{n}C_1a^{n-1}b^1 + _{n}C_2a^{n-2}b^2 + \dots + _{n}C_na^0b^n$$

Chapter 16

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$
$$[p + (1-p)]^n = {}_nC_np^n + \dots + {}_nC_kp^k(1-p)^{n-k} + \dots + {}_nC_0(1-p)^n$$

Chapter 12

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

$$b^{2} = a^{2} + c^{2} - 2ac \cos B$$

$$c^{2} = a^{2} + b^{2} - 2ab \cos C$$

$$\mu = \frac{v}{|v|}$$

$$\cos \theta = \frac{u \cdot v}{|u||v|}, \sin \theta = \frac{|u \times v|}{|u||v|}$$

$$\begin{vmatrix} + & - & + \\ - & + & - \\ + & - & + \end{vmatrix}$$

Area of a Parallelogram =
$$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$

Volume of a Parallelepiped =
$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

Chapter 19

A function is continuous at x = cIf $\lim_{x \to c} f(x) = f(c)$

Chapter 17

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{n}}$$

$$z = \frac{x - \bar{x}}{\sigma}$$

$$\hat{p} - 2\sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}
$$\hat{p} - 3\sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}$$$$

z	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
-3	.0013	.0010	.0007	.0005	.0003	.0002	.0002	.0001	.0001	.0000+
-2	.0228	.0179	.0139	.0107	.0082	.0062	.0047	.0035	.0026	.0019
-1	.1587	.1357	.1151	.0968	.0808	.0668	.0548	.0446	.0359	.0287
-0	.5000	.4602	.4207	.3821	.3446	.3085	.2743	.2420	.2119	.1841
0	.5000	.5398	.5793	.6179	.6554	.6915	.7257	.7580	.7881	.8159
1	.8413	.8643	.8849	.9032	.9192	.9332	.9452	.9554	.9641	.9713
2	.9772	.9821	.9861	.9893	.9918	.9938	.9953	.9965	.9974	.9981
3	.9987	.9990	.9993	.9995	.9997	.9998	.9998	.9999	.9999	1.0000-