Part 3: AP Questions on the Difference Quotient

If \(f \) is a differentiable function, then \(f'(a) \) is given by which of the following?

I. \(\lim_{h \to 0} \frac{f(a + h) - f(a)}{h} \)

II. \(\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \)

III. \(\lim_{x \to a} \frac{f(x + h) - f(x)}{h} \)

(A) I only \hspace{1cm} (B) II only \hspace{1cm} (C) I and II only \hspace{1cm} (D) I and III only \hspace{1cm} (E) I, II, and III

If \(f(x) = e^x \), which of the following is equal to \(f''(e) \)?

(A) \(\lim_{h \to 0} \frac{e^{x+h}}{h} \)

(B) \(\lim_{h \to 0} \frac{e^{x+h} - e^e}{h} \)

(C) \(\lim_{h \to 0} \frac{e^{x+h} - e}{h} \)

(D) \(\lim_{h \to 0} \frac{e^{x+h} - 1}{h} \)

(E) \(\lim_{h \to 0} \frac{e^{x+h} - e^e}{h} \)

\(\lim_{h \to 0} \frac{\ln(e + h) - 1}{h} \) is

(A) \(f''(e) \), where \(f(x) = \ln x \)

(B) \(f'(e) \), where \(f(x) = \frac{\ln x}{x} \)

(C) \(f'(1) \), where \(f(x) = \ln x \)

(D) \(f'(1) \), where \(f(x) = \ln(x + e) \)

(E) \(f'(0) \), where \(f(x) = \ln x \)
AP Calculus AB – Estimating the derivative using a table

6. Sketch the graph of a function that has a positive derivative for \(x<2\) and a negative derivative for \(x>2\) and that has \(f'(2)=0\).

7. Sketch the graph of a function that has a positive derivative for \(x<-1\) and a negative derivative for \(x>-1\) and that is not differentiable at 1.

8. Given the graph of \(f(x)\) Sketch \(f'(x)\).

9. Based on the graph fill in the blank with < or >. \[\frac{f(3)-f(1)}{3-1} \, f'(1)\]