Chapter 6 Mixed Review

1. A woman is walking along a straight path beginning at point P. A graph of the walker’s velocity is given below in miles per hour. How far away from the starting point P has she walked 9 hours from the starting time?

 a. 6.5 miles
 b. 12 miles
 c. 13.5 miles
 d. 18 miles
 e. 19.5 miles

2. \[
\int \frac{15x^9 + 4x^2 + 16}{x^5} \, dx
\]

3. Find the average value. Let $y = 2 \cos x$ on \([0, \frac{\pi}{2}]\)

4. Find the average rate of change for the equation in #3 on the same interval.
1091. The graph of a function f consists of a semicircle and two line segments as shown below. Let $g(x) = \int_{1}^{x} f(t) \, dt$.

a) Find $g(1)$.

b) Find $g(3)$.

c) Find $g(-1)$.

d) Find all the values of x on the open interval $(-3, 4)$ at which g has a relative maximum.

e) Write an equation for the line tangent to the graph of g at $x = -1$.

f) Find the x-coordinate of each point of inflection of the graph of g on the open interval $(-3, 4)$.

g) Find the range of g.

6.

A car’s velocity is shown on the graph above. Which of the following gives the total distance traveled from $t = 0$ to $t = 16$ (in kilometers)?

(A) 360 (B) 390 (C) 780 (D) 1000 (E) 1360
7. A particle moves along the x-axis so that its acceleration at any time \(t > 0 \) is given by \(a(t) = 12t - 18 \). At time \(t = 1 \), the velocity of the particle is \(v(1) = 0 \) and the position is \(x(1) = 9 \).

(a) Write an expression for the velocity of the particle \(v(t) \).

(b) At what values of \(t \) does the particle change direction?

(c) Write an expression for the position \(x(t) \) of the particle.

(d) Find the total distance traveled by the particle from \(t = \frac{3}{2} \) to \(t = 6 \).

8. A continuous function \(f \) is defined on the closed interval \(-10 \leq x \leq 10\). The graph of \(f \) consists of a semi-circle and four line segments as shown in the figure above. Let \(g \) be the function defined by \(g(x) = \int_{-3}^{x} f(t) \, dt \).

(a) Find \(\lim_{x \to 5^-} g(x) \)

(b) Find the average rate of change for \(f \) on the interval \(-10 \leq x \leq 10\)

(c) Does the Mean Value Theorem guarantee a value \(c, -10 < c < 10 \) such that \(f'(c) \) will equal the average rate of change from part (b)?

(d) Show [using Calculus] that \(f'(6) \) does not exist

(e) Find the value of \(g(-3) \)

(f) Find the value of \(g(3) \)

(g) Find the value of \(g(-10) \)

(h) Find the value of \(g(10) \)
(i) Find $g'(x)$

(j) Find the $x-$value(s) of the critical value(s) for the graph of g and classify as relative minimum, relative maximum, or neither

(k) Find all intervals where the graph of g is increasing

(l) Find all intervals where the graph of g is decreasing

(m) Find the absolute extrema for the graph of g

(n) Find $g'(5)$

(o) Write the equation of the line tangent to the graph of g at $x = 5$

(p) Use the tangent line from part (o) to estimate $g(5.1)$

(q) Does the tangent line from part (o) lie above or below the graph of g?

(r) Is the estimate you found in part (p) an over- or an under-estimate?

(s) Find $g'(-4)$

(t) Write the equation of the line tangent to the graph of g at $x = -4$

(u) Use the tangent line from part (t) to find an estimate for $g(-4.1)$

(v) Does the tangent line from part (t) lie above or below the graph of g?
13. If \(h'(x) = e^{x-1}(2x-1)^2(x-3)^3(4x+5) \), then \(h(x) \) has how many points of inflection?
 (A) 4
 (B) 3
 (C) 2
 (D) 1
 (E) 0

22. Let \(y = 2x(\sin 2x + x \cos 2x) \) in the interval \(0 \leq x \leq \frac{\pi}{2} \). What is the average rate of change of \(y \) with respect to \(x \) in this interval?
 (A) \(-\pi\)
 (B) \(-\frac{\pi}{2}\)
 (C) 0
 (D) \(\frac{\pi}{2}\)
 (E) \(\pi\)

24. The concentration of an anti-inflammatory drug in the bloodstream \(t \) mins after taking a single dose is \(C(t) = \frac{2t}{8100 + t^2} \), \(t \geq 0 \).
 At what time is the concentration the greatest?
 (A) 90 minutes
 (B) 30\(\sqrt{6}\) minutes
 (C) 30\(\sqrt{3}\) minutes
 (D) 15\(\sqrt{6}\) minutes
 (E) none of these

29. Suppose \(g(0) = 4 \), \(g'(0) = 8 \), and \(g''(0) = -12 \). If \(h(x) = \sqrt{g(x)} \), what is \(h''(0) \)?
 (A) \(-5\)
 (B) \(-\frac{13}{4}\)
 (C) \(-\frac{1}{32}\)
 (D) \(\frac{3}{8}\)
 (E) 1

The graph of \(f(x) \) consists of four line segments and a semicircle as shown above in the closed interval \(-3 \leq x \leq 5\). Let \(g \) be the function given by \(g(x) = \int_{0}^{x} f(t) \, dt \). Use this information for problems 5–7.

5. What is \(g(-1) + g'(-1) + g''(-1) \)?
 (A) \(-1\)
 (B) 0
 (C) 1
 (D) 2
 (E) 3

6. What is \(\int_{-3}^{3} f(t) \, dt \)?
 (A) \(7 - \pi\)
 (B) \(7 - \frac{\pi}{2}\)
 (C) \(7 - \frac{\pi}{4}\)
 (D) \(12 - \frac{\pi}{2}\)
 (E) \(12 - \frac{\pi}{4}\)

7. Which of the following statements is false for \(g(x) \)?
 (A) The absolute maximum for \(g(x) \) occurs at \(x = 5 \).
 (B) A relative minimum for \(g(x) \) occurs at \(x = -1 \).
 (C) A point of inflection for \(g(x) \) occurs at \(x = 3 \).
 (D) \(g(x) \) has roots at \(x = 0 \) and \(x = -2 \).
 (E) \(g(x) \) is concave down in the open interval \(-2 < x < -1 \).
Let \(f(x) = x^2 + \int_{-2}^{x} g(t) \, dt \), where \(g(x) \) is shown in the graph above. Use this graph to answer problems 39–41.

39. What is \(f(-2) \)?

(A) -6
(B) -4
(C) 0
(D) 2
(E) 4

40. What is \(f'(-2) \)?

(A) -6
(B) -4
(C) 0
(D) 2
(E) 4

41. What is \(f'(2) \)?

(A) -6
(B) -4
(C) 0
(D) 2
(E) 4

5. Consider the function \(h(x) = 3x^2 - \sqrt{x+1} \).

a. Evaluate \(\frac{1}{3-\frac{-1}{2}} \int_{-1}^{3} (3x^2 - \sqrt{x+1}) \, dx \) and interpret its meaning.

b. What is the equation of the tangent to \(h(x) \) at \(x = 0 \)?

c. Use the tangent found in part b to approximate \(h(x) \) at \(x = -0.01 \).

d. Is the approximation, found in part c, greater or less than the actual value of \(h(x) \) at \(x = -0.01 \)? Justify your answer using calculus.