AP REVIEW SESSION 2

Derivatives

- Limit Definition of Derivative (Both Forms)
- Limit Definition of Differentiability
- Derivative represented graphically, numerically, analytically, and verbally.
- Power, Product, & Quotient Rule for Differentiation.
 - Particle Motion
 - Equation of Tangent Line

No-Calc

2003

4. If \(y = \frac{2x + 3}{3x + 2} \), then \(\frac{dy}{dx} = \)

(A) \(\frac{12x + 13}{(3x + 2)^2} \)
(B) \(\frac{12x - 13}{(3x + 2)^2} \)
(C) \(\frac{5}{(3x + 2)^2} \)
(D) \(\frac{-5}{(3x + 2)^2} \)
(E) \(\frac{2}{3} \)

16. If the line tangent to the graph of the function \(f \) at the point \((1, 7) \) passes through the point \((-2, -2) \), then \(f'(1) \) is

(A) -5
(B) 1
(C) 3
(D) 7
(E) undefined
89. Let f be a differentiable function with $f(2) = 3$ and $f''(2) = -5$, and let g be the function defined by $g(x) = xf(x)$. Which of the following is an equation of the line tangent to the graph of g at the point where $x = 2$?

(A) $y = 3x$
(B) $y - 3 = -5(x - 2)$
(C) $y - 6 = -5(x - 2)$
(D) $y - 6 = -7(x - 2)$
(E) $y - 6 = -10(x - 2)$

$$f(x) = \begin{cases}
 x + 2 & \text{if } x \leq 3 \\
 4x - 7 & \text{if } x > 3
\end{cases}$$

20. Let f be the function given above. Which of the following statements are true about f?

I. $\lim_{x \to 3} f(x)$ exists.

II. f is continuous at $x = 3$.

III. f is differentiable at $x = 3$.

(A) None
(B) I only
(C) II only
(D) I and II only
(E) I, II, and III

24. Let f be the function defined by $f(x) = 4x^3 - 5x + 3$. Which of the following is an equation of the line tangent to the graph of f at the point where $x = -1$?

(A) $y = 7x - 3$
(B) $y = 7x + 7$
(C) $y = 7x + 11$
(D) $y = -5x - 1$
(E) $y = -5x - 5$
25. A particle moves along the x-axis so that at time $t \geq 0$ its position is given by $x(t) = 2t^3 - 21t^2 + 72t - 52$. At what time t is the particle at rest?

(A) $t = 1$ only
(B) $t = 3$ only
(C) $t = \frac{7}{2}$ only
(D) $t = 3$ and $t = \frac{7}{2}$
(E) $t = 3$ and $t = 4$

2008

11. What is the slope of the line tangent to the graph of $y = \frac{e^{-x}}{x + 1}$ at $x = 1$?

(A) $-\frac{1}{e}$ (B) $-\frac{3}{4e}$ (C) $-\frac{1}{4e}$ (D) $\frac{1}{4e}$ (E) $\frac{1}{e}$

14. $\lim_{h \to 0} \frac{e^{(2+h)} - e^2}{h} =$

(A) 0 (B) 1 (C) $2e$ (D) e^2 (E) $2e^2$
18. For the function \(f \), \(f'(x) = 2x + 1 \) and \(f(1) = 4 \). What is the approximation for \(f(1.2) \) found by using the line tangent to the graph of \(f \) at \(x = 1 \) ?

(A) 0.6 (B) 3.4 (C) 4.2 (D) 4.6 (E) 4.64

23. The graph of the even function \(y = f(x) \) consists of 4 line segments, as shown above. Which of the following statements about \(f \) is false?

(A) \(\lim_{x \to 0} (f(x) - f(0)) = 0 \)

(B) \(\lim_{x \to 0} \frac{f(x) - f(0)}{x} = 0 \)

(C) \(\lim_{x \to 0} \frac{f(x) - f(-x)}{2x} = 0 \)

(D) \(\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = 1 \)

(E) \(\lim_{x \to 3} \frac{f(x) - f(3)}{x - 3} \) does not exist.
76. A particle moves along the x-axis so that at any time $t \geq 0$, its velocity is given by $v(t) = 3 + 4.1 \cos(0.9t)$. What is the acceleration of the particle at time $t = 4$?

(A) -2.016 (B) -0.677 (C) 1.633 (D) 1.814 (E) 2.978

76. A particle moves along the x-axis so that at any time $t \geq 0$, its velocity is given by $v(t) = t^2 \ln(t + 2)$. What is the acceleration of the particle at time $t = 6$?

(A) 1.500 (B) 20.453 (C) 29.453 (D) 74.860 (E) 133.417

78. For $t \geq 0$ hours, H is a differentiable function of t that gives the temperature, in degrees Celsius, at an Arctic weather station. Which of the following is the best interpretation of $H''(24)$?

(A) The change in temperature during the first day
(B) The change in temperature during the 24th hour
(C) The average rate at which the temperature changed during the 24th hour
(D) The rate at which the temperature is changing during the first day
(E) The rate at which the temperature is changing at the end of the 24th hour
<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
<th>$f'(x)$</th>
<th>$g(x)$</th>
<th>$g'(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>-2</td>
<td>-3</td>
<td>4</td>
</tr>
</tbody>
</table>

89. The table above gives values of the differentiable functions f and g and their derivatives at $x = 1$. If $h(x) = (2f'(x) + 3)(1 + g(x))$, then $h'(1) =$

(A) -28 (B) -16 (C) 40 (D) 44 (E) 47
6. Let \(f \) be the function defined by

\[
f(x) = \begin{cases}
\sqrt{x+1} & \text{for } 0 \leq x \leq 3 \\
5 - x & \text{for } 3 < x \leq 5.
\end{cases}
\]

(a) Is \(f \) continuous at \(x = 3 \)? Explain why or why not.

(b) Find the average value of \(f(x) \) on the closed interval \(0 \leq x \leq 5 \).

(c) Suppose the function \(g \) is defined by

\[
g(x) = \begin{cases}
k\sqrt{x+1} & \text{for } 0 \leq x \leq 3 \\
mx + 2 & \text{for } 3 < x \leq 5,
\end{cases}
\]

where \(k \) and \(m \) are constants. If \(g \) is differentiable at \(x = 3 \), what are the values of \(k \) and \(m \)?